Effectiveness of the arginine-carnitine drug usage in patients with burn wounds

December 20, 2023
546
УДК:  616-035.1: 616-08-039.11:616.-001.17
Specialities :
Resume

Aim: to study the effect of the combined arginine-carnitine drug in patients with burn wounds.

Materials and methods. 41 patients (18 in main group and 23 in comparison group) were examined. Patients of the main group received combined arginine-carnitine drug in addition to the generally accepted scheme of medical and surgical treatment. All patients underwent a study in the capillary zone of thermal injury and in the peripheral blood for the content of homocystein, endothelin-1, and tumor necrosis factor-α. The pathomorphological and immunohistochemical study was performed with the determination of vimentin, CD31, VEGF and pancytokeratin. The studies were performed on the 2–3rd day after the injury (baseline), on the 8–10th day (during combined arginine-carnitine drug treatment) and on the 12–14th day (after completion of the combined arginine-carnitine drug course).

Results. Tumor necrosis factor-α levels in peripheral blood significantly decreased in main group. The homocystein levels in the wound blood in main group significantly decreased on the 8–10th and the 12–14th day. The endothelin-1 levels in peripheral blood and in wound blood in main group significantly decreased during the study period. The immunohistochemical study showed increased expression of markers CD31, VEGF, vimentin in the regeneration zone, pronounced positive expression of epithelial cells (pancytokeratin) in main group.

Conclusions. The combined arginine-carnitine drug usage in burn therapy reduces the inflammatory process intensity in a burn wound, reduces the risk of development and manifestation of endothelial dysfunction, ensures wound process optimization, creates favorable conditions for reparative regeneration processes in patients with burn wounds.

References

  • 1. World Health Organization (2018) Global Health Estimates. http://www.who.int/news-room/fact-sheets/detail/burns.
  • 2. Mofazzal Jahromi M.A., Sahandi Zangabad P., Moosavi Basri S.M. et al. (2018) Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 123: 33–64. DOI: 10.1016/j.addr.2017.08.001.
  • 3. D’Abbondanza J.A., Shahrokhi S. (2021) Burn Infection and Burn Sepsis. Surg. Inf., 22(1): 58–64. DOI: 10.1089/sur.2020.102.
  • 4. Kozinets H.P., Оsadcha O.I., Kovalenko O.M., Lynnyk O.M. (2019) Wound process influence on formation systemic inflammatory response and early sepsis in patients with burns in acute period of burn disease. Mod. Med. Technol., 41(2): 13–20. DOI: 10.34287/MMT.2(41).2019.33.
  • 5. Jeschke M.G., van Baar M.E., Choudhry M.A. et al. (2020) Burn injury. Nat. Rev. Dis. Primers., 6(1): 11. DOI: 10.1038/s41572-020-0145-5.
  • 6. Roshangar L., Soleimani Rad J., Kheirjou R. et al. (2019) Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds, 31(12): 308–315.
  • 7. Incalza M.A., D’Oria R., Natalicchio A. et al. (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol.,100: 1–19. DOI: 10.1016/j.vph.2017.05.005.
  • 8. Lynnyk O.M., Osadcha O.I., Kozynets H.P. et al. (2021) Features of the immune response to thermal trauma. Fiziol. Zh., 67(6): 32–39. DOI: 10.15407/fz67.06.032.
  • 9. Wang L., Cheng C.K., Yi M. et al. (2022) Targeting endothelial dysfunction and inflammation. J. Mol. Cell Cardiol.,168: 58–67. DOI: 10.1016/j.yjmcc.2022.04.011.
  • 10. Brewster L.M., Garcia V.P., Levy M.V. et al. (2020) Endothelin-1-induced endothelial microvesicles impair endothelial cell function. J. Appl. Physiol., 128(6): 1497–1505. DOI: 10.1152/japplphysiol.00816.2019.
  • 11. Taneja G., Sud A., Pendse N. et al. (2019) Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc. toxicol., 19(1): 1–12. doi.org/10.1007/s12012-018-9491-x.
  • 12. Kim J., Kim H., Roh H., Kwon Y. (2018) Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharm. Res., 41(4): 372–383. DOI: 10.1007/s12272-018-1016-4.
  • 13. Esse R., Barroso M., Tavares de Almeida I., Castro R. (2019) The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int. J. Mol. Sci., 20(4): 867. DOI: 10.3390/ijms20040867.
  • 14. Kaplan P., Tatarkova Z., Sivonova M.K. et al. (2020) Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems. Int. J. Mol. Sci., 21(20): 7698. DOI: 10.3390/ijms21207698.
  • 15. Djuric D., Jakovljevic V., Zivkovic V., Srejovic I. (2018) Homocysteine and homocysteine-related compounds: an overview of the roles in the pathology of the cardiovascular and nervous systems. Can. J. Physiol. Pharmacol., 96(10): 991–1003. DOI: 10.1139/cjpp-2018-0112.
  • 16. Medina-Leyte D.J., Zepeda-García O., Domínguez-Pérez M. et al. (2021) Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci., 22(8): 3850. DOI: 10.3390/ijms22083850.
  • 17. Gambardella J., Khondkar W., Morelli M.B. et al. (2020) Arginine and Endothelial Function. Biomedicines, 8(8): 277. DOI: 10.3390/biomedicines8080277.
  • 18. Akar E., Emon S.T., Uslu S. et al. (2019) Effect of L-Arginine Therapy on Vasospasm: Experimental Study in Rats. World Neurosurg., 132: e443–e446. DOI: 10.1016/j.wneu.2019.08.119.
  • 19. Arribas-López E., Zand N., Ojo O. et al. (2021) The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients, 13(8): 2498. DOI: 10.3390/nu13082498.
  • 20. Haghighatdoost F., Jabbari M., Hariri M. (2019) The effect of L-carnitine on inflammatory mediators: a systematic review and meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol., 75(8): 1037–1046. DOI: 10.1007/s00228-019-02666-5.
  • 21. Virmani M.A., Cirulli M. (2022) The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int. J. Mol. Sci., 23(5): 2717. DOI: 10.3390/ijms23052717.
  • 22. Tian X.X., Kong W.C., Li P.T. et al. (2020) Effects of early supplement of exogenous L-carnitine on renal function in severely scalded rats. Zhonghua Shao Shang Za Zhi, 36(7): 553–559. DOI: 10.3760/cma.j.cn501120-20200203-00038.
  • 23. Li P., Xia Z., Kong W. et al. (2021) Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity. Nutr. Metab. (Lond.),18(1): 65. DOI: 10.1186/s12986-021-00592-x.
  • 24. Markiewicz-Gospodarek A., Kozioł M., Tobiasz M. et al. (2022) Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int. J. Environment. Res. Publ. Health, 19(3): 1338. DOI: 10.3390/ijerph19031338.
  • 25. Amores-Sánchez M.I., Medina M.A. (2000) Methods for the determination of plasma total homocysteine: a review. Clin. Chem. Lab. Med., 38(3): 199–204. DOI: 10.1515/CCLM.2000.028.
  • 26. Rossi G.P., Seccia T.M., Albertin G., Pessina A.C. (2000) Measurement of endothelin: clinical and research use. Ann. Clin. Biochem., 37 (Pt. 5): 608–626. DOI: 10.1258/0004563001899906.
  • 27. Sokolova L., Belchina Y., Pushkarev V. et al. (2020) The blood level of endothelin-1 in diabetic patients depending on the characteristics of the disease. Int. J. Endocrinol. (Ukraine), 16(3): 204–208. DOI: 10.22141/2224-0721.16.3.2020.205267.
  • 28. Rosai J. (Ed.) (2011) Rosai and Ackerman’s Surgical Pathology. Seven ed., Elsevier Inc., 1(2, 3): 25–93 p.
  • 29. Kumar V., Abbas A.K., Aster J.C., Perkins J.A. (2015) Robbins and cotran pathologic basis of disease (Ninth). Elsevier/Saunders. 1379 p.
  • 30. Apte R.S., Chen D.S., Ferrara N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176(6): 1248–1264. DOI: 10.1016/j.cell.2019.01.021.
  • 31. Peach C.J., Mignone V.W., Arruda M.A. et al. (2018) Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int. J. Mol. Sci., 19(4): 1264. DOI: 10.3390/ijms19041264.
  • 32. Battaglia R.A., Delic S., Herrmann H., Snider N.T. (2018) Vimentin on the move: new developments in cell migration. F1000 Res., 7: F1000 Faculty Rev-1796. DOI: 10.12688/f1000research.15967.1.
  • 33. Dabbs D.J. (2021) Diagnostic Immunohistochemistry, 6th Ed. Theranostic and genomic applications. Elsevier, 1000 p.
  • 34. Chi Y., Liu X., Chai J. (2021) A narrative review of changes in microvascular permeability after burn. Ann. Transl. Med., 9(8): 719. DOI: 10.21037/atm-21-1267.
  • 35. Wei J., Yu Y., Feng Y. et al. (2019) Negative Correlation Between Serum Levels of Homocysteine and Apolipoprotein M. Curr. Mol. Med.,19(2): 120–126. DOI: 10.2174/1566524019666190308115624.
  • 36. Gradinaru D., Borsa C., Ionescu C., Prada G.I. (2015) Oxidized LDL and NO synthesis–Biomarkers of endothelial dysfunction and ageing. Mech. Ageing Dev., 151: 101–113. DOI: 10.1016/j.mad.2015.03.003.
  • 37. Lertkiatmongkol P., Liao D., Mei H. et al. (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr. Opin. Hematol., 23(3): 253–259. DOI: 10.1097/MOH.0000000000000239.
  • 38. Luo L., Xu M., Liao D. et al. (2020) PECAM-1 protects against DIC by dampening inflammatory responses via inhibiting macrophage pyroptosis and restoring vascular barrier integrity. Translational research. J. Lab. Clin. Med., 222, 1–16. DOI: 10.1016/j.trsl.2020.04.005.