Efficacy of structurally modifying molecules in patients with degenerative-dystrophic spine pathology

October 28, 2021
986
Resume

The use of structurally modifying molecules in degenerative-dystrophic diseases of the spine remains a topical issue in neurological practice. Objective: to evaluate the efficacy of the combined use of structurally modifying molecules, namely FORTIGEL — proFLEX®, drinking collagen hydrolysate BONNY Chondro, a complex of glycosaminoglycans and methylsulfonylmethane SAM-e 400, an endogenous chondroprotector, in patients with degenerative-dystrophic diseases of the spine. Methods. The study included 32 patients (15 men, 17 women) aged 36 to 81 years (mean age 54.64±2.34 years) with the duration of pain from 1 week to 25 years (mean duration 5.59±1.45 years). The examined women suffered from pain 3.4 times longer than men (8.64±2.41 and 2.55±1.07 years, respectively; p<0.03). All patients received structurally modifying molecules according to the following three-step scheme: step 1 — SAM-e 400, 1 tablet 2 times a day for 1 month, step 2 — BONNY Chondro, 1 stick a day for 3 months after SAM-e 400, step 3 — proFLEX®, 1 vial once a day for 3 months. As steps 2 and 3 were performed in parallel, the total course of treatment was 4 months. Results. 4 months after administration of the proposed SYSADOA scheme, both the Visual analog scale and the Roland — Morris Disability Questionnaire score significantly decreased in the study group, with no difference between men and women. The Roland — Morris Disability Questionnaire score disability degree decreased 2 times (p<0.001) in the group as a whole, with women — 2 times, and men — 1.8 times (p<0.001). That is, treatment led to improved quality of life by reducing degree of disability, as evidenced by a decrease in complaints of pain in the study group by 51.75±2.56%, among women — by 51.74±3.84%, among men — by 51.77±3.51%.

References

  • 1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159): 1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
  • 2. Maher C., Underwood M., Buchbinder R. (2017) Non-specific low back pain. Lancet Lond. Engl., 389(10070): 736–747. doi: 10.1016/S0140-6736(16)30970-9.
  • 3. Menezes Costa L.D.C., Maher C.G., Hancock M.J. et al. (2012) The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ Can. Med. Assoc. J., 184(11): E613–E624. doi: 10.1503/cmaj.111271.
  • 4. Hoy D., March L., Brooks P. et al. (2014) The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis., 73(6): 968–974. doi: 10.1136/annrheumdis-2013-204428.
  • 5. Ferreira M.L., Machado G., Latimer J. et al. (2010) Factors defining care-seeking in low back pain — a meta-analysis of population based surveys. Eur. J. Pain, 14(7): 747.e1–e7. doi: 10.1016/j.ejpain.2009.11.005.
  • 6. Jiang S., Liu Y., Xu B. et al. (2020) Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. Wiley Interdiscip. Rev. RNA, 11(4): e1584. doi: 10.1002/wrna.1584.
  • 7. Maroudas A., Stockwell R.A., Nachemson A., Urban J. (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J. Anat., 120(1): 113–130.
  • 8. Benneker L.M., Heini P.F., Alini M. et al. (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine, 30(2): 167–173. doi: 10.1097/01.brs.0000150833.93248.09.
  • 9. Urban J.P., Holm S., Maroudas A., Nachemson A. (1977) Nutrition of the intervertebral disk. An in vivo study of solute transport. Clin. Orthop., 129: 101–114.
  • 10. Yi H., Zhang W., Cui Z.-M. et al. (2020) Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway. J. Orthop. Surg., 15(1): 424. doi: 10.1186/s13018-020-01944-8.
  • 11. Lian C., Gao B., Wu Z. et al. (2017) Collagen type II is downregulated in the degenerative nucleus pulposus and contributes to the degeneration and apoptosis of human nucleus pulposus cells. Mol. Med. Rep., 16(4): 4730–4736. doi: 10.3892/mmr.2017.7178.
  • 12. Tat S.K., Pelletier J.-P., Verges J. et al. (2007) Chondroitin and glucosamine sulfate in combination decrease the pro-resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res. Ther., 9(6): R117. doi: 10.1186/ar2325.
  • 13. Cutolo M., Berenbaum F., Hochberg M. et al. (2015) Commentary on recent therapeutic guidelines for osteoarthritis. Semin. Arthritis Rheum., 44(6): 611–617. doi: 10.1016/j.semarthrit.2014.12.003.
  • 14. Petrella R.J., DiSilvestro M.D., Hildebrand C. (2002) Effects of hyaluronate sodium on pain and physical functioning in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled clinical trial. Arch. Intern. Med., 162(3): 292–298. doi: 10.1001/archinte.162.3.292.
  • 15. Tamir E., Robinson D., Koren R. et al. (2001) Intra-articular hyaluronan injections for the treatment of osteoarthritis of the knee: a randomized, double blind, placebo controlled study. Clin. Exp. Rheumatol., 19(3): 265–270.
  • 16. Purmessur D., Cornejo M.C., Cho S.K. et al. (2015) Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability. Spine J. Off. J. North Am. Spine Soc., 15(5): 1060–1069. doi: 10.1016/j.spinee.2015.02.003.
  • 17. Cornejo M.C., Cho S.K., Giannarelli C. et al. (2015) Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines. Osteoarthritis Cartilage, 23(3): 487–449. doi: 10.1016/j.joca.2014.12.010.
  • 18. Martel-Pelletier J., Farran A., Montell E. et al. (2015) Discrepancies in composition and biological effects of different formulations of chondroitin sulfate. Mol. Basel. Switz., 20(3): 4277–4289. doi: 10.3390/molecules20034277.
  • 19. Reginster J.Y., Deroisy R., Rovati L.C. et al. (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet Lond. Engl., 357(9252): 251–256. doi: 10.1016/S0140-6736(00)03610-2.
  • 20. Towheed T.E., Maxwell L., Anastassiades T.P. et al. (2005) Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst. Rev., 2: CD002946. doi: 10.1002/14651858.CD002946.pub2.
  • 21. Hochberg M.C., Martel-Pelletier J., Monfort J. et al. (2016) Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann. Rheum. Dis., 75(1): 37–44. doi: 10.1136/annrheumdis-2014-206792.
  • 22. Ghebrehiwet B., Galanakis D.K. (1993) C1q inhibitor (chondroitin-4-sulfate proteoglycan): structure and function. Behring Inst. Mitt., 93: 214–223.
  • 23. Hawker G.A., Mian S., Kendzerska T., French M. (2011) Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res., 63 (Suppl. 11): S240–S252. doi: 10.1002/acr.20543.
  • 24. Ostelo R., Deyo R.A., Stratford P. et al. (2008) Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine, 33(1): 90–94. doi: 10.1097/BRS.0b013e31815e3a10.
  • 25. Roland M., Morris R. (1983) A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine, 8(2): 141–144. doi: 10.1097/00007632-198303000-00004.
  • 26. Davidson M., Keating J.L. (2002) A comparison of five low back disability questionnaires: reliability and responsiveness. Phys. Ther., 82(1): 8–24. doi: 10.1093/ptj/82.1.8.
  • 27. Chiarotto A., Maxwell L.J., Terwee C.B. et al. (2016) Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis. Phys. Ther., 96(10): 1620–1637. doi: 10.2522/ptj.20150420.
  • 28. Burbridge C., Randall J.A., Abraham L., Bush E.N. (2020) Measuring the impact of chronic low back pain on everyday functioning: content validity of the Roland Morris disability questionnaire. J. Patient-Rep. Outcomes, 4(1): 70. doi: 10.1186/s41687-020-00234-5.
  • 29. Usha P.R., M.U.R. Naidu (2004) Randomised, Double-Blind, Parallel, Placebo-Controlled Study of Oral Glucosamine, Methylsulfonylmethane and their Combination in Osteoarthritis. Clin. Drug Investig., 24(6): 353–363. doi: 10.2165/00044011-200424060-00005.
  • 30. Oesser S., Adam M., Babel W., Seifert J. (1999) Oral Administration of 14C Labeled Gelatin Hydrolysate Leads to an Accumulation of Radioactivity in Cartilage of Mice (C57/BL). J. Nutr., 129(10): 1891–1895. doi: 10.1093/jn/129.10.1891.
  • 31. McAlindon T.E., Nuite M., Krishnan N. et al. (2011) Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: A pilot randomized controlled trial. Osteoarthr. Cartil., 19: 399–405.
  • 32. Bruyère O., Zegels B., Leonori L. et al. (2012) Effect of collagen hydrolysate in articular pain: A 6-month randomized, double-blind, placebo controlled study. Complement Ther. Med., 20: 124–130.
  • 33. Jiang I.-X., Yu S., Huang X.-L. et al. (2014) Collagen Peptides Improve Knee Osteoarthritis in Elderly Women. Agro. Food Ind. Hi-Tech., 25: 19–23.
  • 34. Juher T.F., Pérez E.B. (2015) An overview of the beneficial effects of hydrolysed collagen intake on joint and bone health and on skin ageing. Nutr. Hosp., 32 (Suppl. 1): 62–66.
  • 35. García-Coronado J.M., Martínez-Olvera L., Elizondo-Omaña R.E. et al. (2019) Effect of collagen supplementation on osteoarthritis symptoms: A meta-analysis of randomized placebo-controlled trials. Int. Orthop., 43: 531–538.
  • 36. Moskowitz R.W. (2000) Role of collagen hydrolysate in bone and joint disease. Semin. Arthritis Rheum., 30: 87–99.
  • 37. Benito-Ruiz P., Camacho-Zambrano M.M., Carrillo-Arcentales J.N. et al. (2009) A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolysate, for improving joint comfort. Int. J. Food Sci. Nutr., 60 (Suppl. 2): 99–113.
  • 38. Clark K.L., Sebastianelli W., Flechsenhar K.R. et al. (2008) 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr. Med. Res. Opin., 24: 1485–1496.
  • 39. Zdzieblik D., Oesser, S., Gollhofer A., König D. (2017) Improvement of activity-related knee joint discomfort following supplementation of specific collagen peptides. Appl. Physiol. Nutr. Metab., 42(6): 588–595. doi: 10.1139/apnm-2016-0390.
  • 40. Bradley J.D., Flusser D., Katz B.P. et al. (1994) A randomized, double blind, placebo controlled trial of intravenous loading with S-adenosylmethionine (SAM) followed by oral SAM therapy in patients with knee osteoarthritis. J. Rheumatol., 21: 905–911.
  • 41. Stramentinoli G. (1987) Ademethionine as a drug. Am. J. Med., 83(suppl.): 35–42.
  • 42. Agnoli A., Andreoli V., Casacchia M., Cerbo R. (1976) Effect of S-adenosyl- L-methionine (SAMe) upon depressive symptoms. J. Psychiatr. Res., 13: 43–54.
  • 43. Di Padova C. (1987) S-Adenosylmethionine in the treatment of osteoarthritis. Review of the clinical studies. Am. J. Med., 83: 60–65.
  • 44. Harmand M.F., Vilamitjana J., Maloche E. et al. (1987) Effects of S-adenosylmethionine on human articular chondrocyte differentiation. An in vitro study. Am. J. Med., 83: 48–54.
  • 45. Barcelo H.A., Wiemeyer J.C., Sagasta C.L. et al. (1987) Effect of S-adenosylmethionine on experimental osteoarthritis in rabbits. Am. J. Med., 83: 55–59.
  • 46. Gutierrez S., Palacios I., Sanchez-Pernaute O. et al. (1997) SAMe restores the changes in the proliferation and in the synthesis of fibronectin and proteoglycans induced by tumour necrosis factor alpha on cultured rabbit synovial cells. Br. J. Rheumatol., 36: 27–31.
  • 47. Vittur F., Lunazzi G., Moro L. et al. (1986) A possible role for polyamines in cartilage in the mechanism of calcification. Biochim. Biophys. Acta, 881: 38–45.
  • 48. Lieber C.S. (1999) Role of S-adenosyl-L-methionine in the treatment of liver diseases. J. Hepatol., 30: 1155–1159.