Investigation of the cornea biomechanical properties after the excimer laser operations

November 1, 2016
811
Specialities :
Resume

The depression of corneal stability level is an important factor of its supporting properties failure after the keratorefractive surgery. This article presents the results of study of the cornea biomechanical properties after excimer laser operations using seve­ral methods: new method of corneal rigidity evaluation in vivo using Scheimpflug camera Pentacam (Oculus) under artificial increasing of intraocular pressure; elastotonometry by Filatov — Kalfa and Ocular Response Analy­zer (ORA). The studies have shown a high specificity (97.6%), sensitivity (93.3%) and accuracy (95.45%) of the new method and device for assessment of corneal rigidity in vivo. Meanwhile the use of well-known methods like elastotonometry and ORA in the same patients has allowed only admitting the presence of certain tendencies to change the biomechanical parameters, which were not statistically significant and did not allow differentiating the nature of these changes. The coefficient of cornea rigidity (KER), which changes detect the cornea biomechanical disorders, expressed variability and the level of its deformation, and correlated with the depth of the corneal ablation performed at excimer laser operations (r=0,81; p (+) 5,4% as the criteria of eye selection during the planning the excimer laser refractive correction, and for predicting the risk of postoperative complications. A new method or evaluating the cornea biomechanical properties in vivo can be used for quantitative diagnostics of changes of the cornea biomechanical properties after keratorefractive ope­rations.

Published: 01.11.2016

References:

  • Bakbardin Yu.V., Kondratenko Yu.N. (1998) Tonometricheskie, tonograficheskie i gonioskopicheskie metodyi issledovaniya. Kiev, Zdorove, 75 s.
  • Bubnova I.A. (2011) Metodyi otsenki i klinicheskoe znachenie biomehanicheskih svoystv rogovitsyi (kliniko-eksperimentalnoe issledovanie). Avtoref. dis. … d-ra med. nauk, Moskva, 48 s.
  • Iomdina E.N. (2000) Biomehanika skleralnoy obolochki glaza pri miopii: diagnostika narusheniy i ih eksperimentalnaya korrektsiya. Dis. … d-ra med. nauk, Moskva, 326 s.
  • Iomdina E.H. (2006) Mehanicheskie svoystva tkaney glaz cheloveka. V kn.: Sovremennyie problemyi biomehaniki. Pod red. A.K. Tsaturyana, A.A. Shteyna. MGU, Moskva. Vyip. 11, s. 183–200.
  • Kalfa S.F. (1927) K voprosu o teorii tonometrii tonometrami splyuschivaniya. Rus. oftalmol. zhurn., 6(10): 1132–1141.
  • Kotlyar K.E., Iomdina E.N., Koshits I.N. (2004) Biomehanika glaza kak vyisokoeffektivnyiy instrument dlya vyibora i razrabotki perspektivnyih napravleniy klinicheskih i eksperimentalnyih issledovaniy. V kn.: Biomehanika glaza. Sb. trudov IV seminara. Moskva, s. 3–8.
  • Nesterov A.P., Vagin B.I., Budnik V.M. (1994) Applanometr po Maklakovu — Nesterovu. V kn.: 6-y S’ezd oftalmologov Rossii. Tezisyi dokladov. Moskva, s. 379.
  • Pershin K.B., Pashinova N.F. (2000) Oslozhneniya LASIK: analiz 12500 operatsiy. RMZh «Klinicheskaya oftalmologiya», 4(1): 96–99.
  • Serhiienko M.M., Sharhorodska I.V. (2009a) Prystrii dlia otsinky ryhidnosti rohovoi obolonky oka. Patent Ukrainy № 85810.
  • Serhiienko M.M., Sharhorodska I.V. (2009b) Sposib otsinky ryhidnosti rohovoi obolonky oka. Patent Ukrainy № 39262.
  • Sharhorodska I.V. (2016) Porivnialnyi analiz vymiriuvannia biomekhanichnykh pokaznykiv rohivky pry zastosuvanni riznykh metodiv Arkhiv oftalmolohii Ukrainy, 4(1): 61–66.
  • Amoils S.P., Deist M.B., Gous P., Amoils P.M. (2000) Iatrogenic keratectasia after laser in situ keratomileusis for less than –4.0 to –7.0 diopters of myopia. J. Cataract. Refract. Surg., 26(7): 967–977.
  • Friedenwald J.S. (1957) Tonometer calibration; an attempt to remove discrepancies found in the 1954 calibration scale for Schiotz tonometers. Trans. Am. Acad. Ophthalmol. Otolaryngol., 61(1): 108–122.
  • Katsube N., Wang R., Okuma E., Roberts C. (2002) Biomechanical response of the cornea to phototherapeutic keratectomy when treated as a fluid-filled porous material. J. Refract. Surg., 18(5): S593–S597.
  • Kerautret J., Colin J., Touboul D., Roberts C. (2008) Biomechanical characteristics of the ectatic cornea. J. Cataract. Refract. Surg., 34(3): 510–513.
  • Kucumen R.B., Yenerel N.M., Gorgun E. et al. (2008) Corneal biomechanical properties and intraocular pressure changes after phacoemulsification and intraocular lens implantation. J. Cataract. Refract. Surg., 34(12): 2096–2098.
  • Liu J., Roberts C.J. (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J. Cataract. Refract. Surg., 31(1): 146–155.
  • Luce D.A. (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract. Refract. Surg., 31(1): 156–162.
  • Roberts C. (2000) The cornea is not a piece of plastic. J. Refract. Surg., 16(4): 407–413.
  • Sergienko N., Shargorodska I. (2009) Determining corneal hysteresis and preexisting intraocular pressure. J. Cataract. Refract. Surg., 35(11): 2033–2034.
  • Waring G.O. 3rd (2000) Standard graphs for reporting refractive surgery. J. Refract. Surg., 16(4): 459–466.