Epigenetic modifications: a valid mechanism for realizing vascular complications and metabolic memory in diabetes?

July 26, 2023
951
УДК:  616.379-008.64:616.1:616-008.9:575.191
Resume

Epigenetics is a relatively new scientific field that has recently gained widespread attention in medicine. It explains the molecular mechanisms by which environmental factors influence the formation of pathological phenotypes through post-translational regulation of gene activity during an individual’s development. Epigenetic modifications include methylation, acetylation of certain regions of DNA and chromatin, which are responsible for key signaling pathways and can persist across generations of somatic cells and gametes. These persistent changes can lead to the development of diseases, in particular, insulin resistance syndrome and type 2 diabetes, and contribute to the emergence of cardiovascular complications. It was found that epigenetic changes in type 2 diabetes underlie the phenomenon of «metabolic memory», which was revealed in the DCCT-EDIC and UKPDS studies. These studies did not record the protective effect of long-term normalization of glycemia on the progression of macro- and microvascular complications. Further studies have shown that transient hyperglycemia causes modifications of chromatin structure and gene expression due to the methylation of lysine residues in histone H3, leading to persistent negative changes in signaling pathways. As a result, hyperglycemia, hyperlipidemia, and hypertension occur, which, in turn, provoke an increase in the levels of glycation end products, oxidized lipids, and inflammatory cytokines, known as factors of metabolic and vascular disorders in type 2 diabetes. In general, the study of epigenetic modifications will help to better understand the mechanisms underlying the development of various metabolic disorders and contribute to the development of new approaches to their treatment.

References

  1. Cavalli G., Heard E. (2019) Advances in epigenetics link genetics to the environment and disease. Nature, 571: 489–499. doi: 10.1038/s41586-019-1411-0.
  2. Tulsyan S., Aftab M., Sisodiya S. et al. (2022) Molecular basis of epigenetic regulation in cancer diagnosis and treatment. Front. Genet., 13: 885635. doi.org/10.3389/fgene.2022.885635.
  3. Waddington C.H. (2012) The epigenotype. 1942. Int. J. Epidemiol., 41: 10–13. doi:10.1093/ije/dyr186.
  4. Zheng W., Guo J., Liu Z. (2021) Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin. Epigenet., 13: 87. doi.org/10.1186/s13148-021-01079-5.
  5. Holliday R. (1990) Mechanisms for the control of gene activity during development. Biol. Rev. Camb. Philos. Soc., 65(4): 431–471. doi: 10.1111/j.1469-185x.1990.tb01233.x.
  6. Feil R., Fraga M. (2012) Epigenetics and the environment: emerging patterns and implications., 13(2): 97–109. doi: 10.1038/nrg3142.
  7. Geng X., Li Z., Yang Y. (2022) Emerging role of epitranscriptomics in diabetes mellitus and its complications. Front Endocrinol. (Lausanne), 13: 907060. doi: 10.3389/fendo.2022.907060.
  8. Kolb H., Martin S. (2017) Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med., 15: 131. doi: 10.1186/s12916-017-0901-x.
  9. Schrader S., Perfilyev A., Ahlqvist E. et al. (2022) Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diabetes Care, 45(7): 1621–1630. doi: 10.2337/dc21-2489.
  10. Karamanakos G., Kokkinos A., Dalamaga M., Liatis S. (2022) Highlighting the role of obesity and insulin resistance in type 1 diabetes and its associated cardiometabolic complications.Curr. Obes. Rep., 11(3): 180–202. doi: 10.1007/s13679-022-00477-x.
  11. Volkmar M., Dedeurwaerder S., Cunha D., Ndlovu M. et al. (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J., 31(6): 1405–1426. doi: 10.1038/emboj.2011.503.
  12. Ling C., Rönn T. (2019) Epigenetics in human obesity and type 2 diabetes. Cell. Metab., 29: 1028–1044. doi: 10.1016/j.cmet.2019.03.009.
  13. Prasher D., Greenway S., Singh R. (2020) The impact of epigenetics on cardiovascular disease. Biochem. Cell Biol., 98: 12–22. doi: 10.1139/bcb-2019-0045.
  14. Testa R., Bonfigli A., Prattichizzo F. et al. (2017) The «Metabolic Memory» Theory and the earlytreatment of hyperglycemia in prevention of diabetic complications. Nutrients, 9: 437. doi.org/10.3390/nu9050437.
  15. Berezin A. (2016) Metabolic memory phenomenon in diabetes mellitus: Achieving and perspectives. Diabetes Metab. Syndr., 10(Suppl. 1): S176–S183.
  16. Copur S., Rossing P., Afsar B. et al. (2020) A primer on metabolic memory: why existing diabesity treatments fail. Clin. Kidney J., 14(3): 756–767. doi: 10.1093/ckj/sfaa143.
  17. Waki H., Yamauchi T., Kadowaki T. (2012) The epigenome and its role in diabetes. Curr. Diab. Rep., 12(6): 673–685. doi: 10.1007/s11892-012-0328-x.
  18. Poltorak V., Krasova N., Gorshunskaya M. (2022) Glycemic memory as a pathogenic basis for modern antidiabetic therapy algorithm forming. Intern. J. Endocr. (Ukraine), 3(59): 15–21. doi.org/10.22141/2224-0721.3.59.2014.76598.
  19. Kumric M., Ticinovic K.T., Borovac J.A., Bozic J. (2021) Role of novel biomarkers in diabetic cardiomyopathy. World J. Diabetes, 12(6): 685–705. doi: 10.4239/wjd.v12.i6.685.
  20. Kato M., Natarajan R. (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nature reviews. Nephrol., 15(6): 327–345. DOI: 10.1038/s41581-019-0135-6.
  21. Reddy M.A., Zhang E., Natarajan R. (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 58: 443–455. doi: 10.1007/s00125-014-3462-y.
  22. Natarajan R. (2021) Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture. Diabetes, 70(2): 328–337.
  23. Prandi F., Lecis D., Illuminato F. et al. (2022) Epigenetic modifications and non-coding RNA indiabetes-mellitus-induced coronary artery disease: pathophysiological link and new therapeutic frontiers. Int. J. Mol. Sci., 23: 4589. doi.org/10.3390/ijms23094589.
  24. Heid I., Jackson A., Randall J. et al. (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet., 42(11): 949–960. doi: 10.1038/ng.685.
  25. Loos R.J. (2018) The genetics of adiposity. Curr.Opin. Genet. Dev., 50: 86–95. doi: 10.1016/j.gde.2018.02.009.
  26. Sun C., Förster F., Gutsmann B. et al. (2022) Metabolic effects of the waist-to-hip ratio associated locus GRB14/COBLL1 are related to GRB14 expression in adipose tissue. Int. J. Mol. Sci., 23(15): 8558. doi: 10.3390/ijms23158558.
  27. Rönn T., Volkov P., Davegårdh C. et al. (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet., 9(6): e1003572. doi: 10.1371/journal.pgen.1003572.